Background

LOXO-292 is a novel, highly selective, small molecule inhibitor of RET currently in clinical development for patients with advanced cancers harboring oncogenic RET gene alterations, such as RET fusions (non-small cell lung cancer, papillary and other thyroid cancers, other solid tumors) – Activating RET mutations (medullary thyroid cancer)

LIBRETTO-601 is a phase I/II clinical trial evaluating the safety and efficacy of LOXO-292 in patients with RET altered cancers. Best tumor response for the first 82 patients enrolled to 1 dose level

We studied the mutational status of RET variant allele frequencies (AF) in plasma cfDNA of patients receiving LOXO-292 therapy.

Methods

This phase 1/2, open-label, dose-escalation, first-in-human study (NCT03157128) aims to evaluate the safety, tolerability, pharmacokinetics and preliminary antitumor activity of orally administered LOXO-292.

The primary objective of phase 1 is to determine the maximum tolerated dose of LOXO-292 and the recommended phase 2 dose.

One exploratory objective is the assessment and monitoring of RET gene alterations in plasma cfDNA.

Blood samples were collected in Cell-Free DNA Kit* blood collection tubes (Streck) prior to treatment, after 15 days of treatment (cycle 1; day 15; C1D15), and at each restaging, and shipped to a central laboratory for plasma isolation within 72 h.

Gene alterations were assessed in RET and 72 other cancer-related genes, by next-generation sequencing (NGS) of cfDNA (GuardianTM assay; Guardian Health)

Results

As of April 2, 2018, 82 patients had been enrolled to 1 of 8 dose levels (20–120 mg QD-24h in 6:1 RRD; Figure 2).

Table 1. RET alterations

<table>
<thead>
<tr>
<th>Mutation</th>
<th>AF (%)</th>
<th>NGS, C1D15</th>
<th>CRC,</th>
<th>NGS</th>
<th>C1D15</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>RET 5693T>AA</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6066T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6164T>C</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6210T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6292T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6390T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6462T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6566T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6646T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6704T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>RET 6710T>G</td>
<td>0.01</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Plasma response analysis

Plasma response was studied in pretreatment plasma samples from 72 patients with RET alterations detected by tumor genotyping (Figure 3).

- In 34 (81%) of 42 samples, the AF decreased by at least 50%
- In 21 (50%) of 42 samples, the variant became undetectable at C1D15 (clearance)
- Mutations were detected in 18 patients with thyroid cancer and 5 with thyroid cancer and 1 lymphoproliferative disorder
- The expected RET alteration was not found in 23 plasma samples: 3 had no somatic mutations of any type; 2 of these samples had >5 ng DNA input (below the minimum required for the assay)

Plasma detection analysis

- Of the remaining 42, 27 had RET fusions and 15 had RET mutations detected in pretreatment cfDNA
- In 34 (81%) of 42, the variant became undetectable at C1D15 (clearance)
- In 34 (81%) of 42, the AF decreased by at least 50%
- The median AF decrease at C1D15 was 99%

Comparison of imaging- and cfDNA-based tumor changes

- Changes in tumor burden as measured by RECIST and cfDNA analysis were compared for 36 patients where both measures were available

- cfDNA analysis identified a subset of cases with radiographic stable disease harboring molecular evidence of a treatment effect (Figure 4).

Conclusions

- The rapid clearance of RET variants from plasma cfDNA on LOXO-292 treatment supports the clinical activity of this agent across a range of doses, tumor types and RET alterations.

- NGS of plasma cfDNA can detect a range of targetable RET variants, though tumor genotyping remains critical if the initial plasma NGS is negative.

Acknowledgment

The authors thank all the study patients, study staff, and sponsors who supported this study.

References

Acknowledgment

This study was supported by Lexogen the US Food and Drug Administration and the California Strategic Clinical Network. Copies of the poster can be obtained through QR (Quick Response) and/or free online in the upcoming issue of the journal reproduced without written permission of the authors.

Copyright 2018