A pediatric phase 1 study of larotrectinib, a highly selective inhibitor of the tropomyosin receptor kinase (TRK) family

Laetsch TW,1 DuBois SG,2 Nagasubramanian R,3 Turpin B,4 Mascarenhas L,5 Federman N,6 Reynolds M,7 Smith S,7 Cruickshank S,7 Cox MC,7 Pappo AS,8 Hawkins DS9

1University of Texas Southwestern/Children’s Health, Dallas, TX; 2Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA; 3Nemours Children's Hospital, Orlando, FL; 4Cincinnati Children's Hospital Medical Center, Cincinnati, OH; 5Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA; 6University of California, Los Angeles, Los Angeles, CA; 7Loxo Oncology, Inc., South San Francisco, CA; 8St. Jude Children’s Research Hospital, Memphis, TN; 9Seattle Children’s Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA
Role of TRK in normal biology and cancer

Neurotrophin family of receptors

- **TRKA (NTRK1)**: Pain, thermoregulation
- **TRKB (NTRK2)**: Movement, memory, mood, appetite, body weight
- **TRKC (NTRK3)**: Proprioception

TRK uncommonly expressed in normal tissues or cancer

TRK fusions

- Ligand binding domain (LBD) replaced by 5’ fusion partner
- Drives overexpression and ligand-independent activation

TRK uncommonly expressed in normal tissues or cancer

Fusion drives abnormally high expression and activation of TRK kinase domain
Pediatric cancers and TRK fusions

- Gliomas
- Thyroid cancer
- Secretory breast carcinoma
- Infantile fibrosarcoma
- Spitz nevi
- Congenital mesoblastic nephroma
- Various sarcomas

- Rare neoplasm with high TRK fusion frequency
Larotrectinib (LOXO-101)

- Larotrectinib is the first and only selective pan-TRK inhibitor in clinical development
- Highly potent against TRKA, TRKB, TRKC (5–11 nM IC\textsubscript{50} in cellular assays)
- Highly selective
- Responses seen in adult patients with TRK fusions
- Recommended phase 2 dose in adults is 100 mg BID continuously
- Liquid formulation for pediatric patients
Pediatric phase I trial design (SCOUT)

Eligibility
- 1 month – 21 years of age
- Relapsed/refractory solid tumor (including CNS) or locally advanced IFS
- Evaluable or measurable disease by RECIST v1.1
- Karnofsky/Lansky status ≥50
- Adequate organ function

Objectives
- Safety, including dose-limiting toxicities (DLTs)
- Pharmacokinetics
- Maximum tolerated dose (MTD)
- Antitumor activity

Modified rolling 6 design
- Patients with TRK fusion continue to enroll to current dose level during DLT evaluation

Intrapatient dose escalation allowed
- Target $\text{AUC}_{0-24} \geq 50\%$ of adults at RP2D

TRK fusion status determined by local CLIA (or similarly accredited) laboratories

Data cut-off: April 14, 2017
Patient and disease characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (N=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group, n (%)</td>
<td></td>
</tr>
<tr>
<td><1 year</td>
<td>5 (21)</td>
</tr>
<tr>
<td>1–2 years</td>
<td>2 (8)</td>
</tr>
<tr>
<td>2–12 years</td>
<td>10 (42)</td>
</tr>
<tr>
<td>>12 years</td>
<td>7 (29)</td>
</tr>
<tr>
<td>Median age (range), years</td>
<td>4.5 (0.1–18.0)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>12 (50)</td>
</tr>
<tr>
<td>Extent of disease at study enrollment, n (%)</td>
<td></td>
</tr>
<tr>
<td>Locally advanced</td>
<td>14 (58)</td>
</tr>
<tr>
<td>Metastatic</td>
<td>10 (42)</td>
</tr>
<tr>
<td>No. of prior systemic therapies, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>7 (29)</td>
</tr>
<tr>
<td>1</td>
<td>6 (25)</td>
</tr>
<tr>
<td>≥2</td>
<td>11 (46)</td>
</tr>
</tbody>
</table>
Range of histologies treated

<table>
<thead>
<tr>
<th>Cancer types, n (%)</th>
<th>TRK fusion (n=17)</th>
<th>Non-TRK fusion (n=7)</th>
<th>Total (N=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantile fibrosarcoma (IFS)</td>
<td>8 (47)</td>
<td>0</td>
<td>8 (33)</td>
</tr>
<tr>
<td>Soft tissue sarcoma, various</td>
<td>7 (41)</td>
<td>0</td>
<td>7 (29)</td>
</tr>
<tr>
<td>Primary CNS</td>
<td>0</td>
<td>5 (71)</td>
<td>5 (21)</td>
</tr>
<tr>
<td>Thyroid</td>
<td>2 (12)</td>
<td>0</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>0</td>
<td>1 (14)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>0</td>
<td>1 (14)</td>
<td>1 (4)</td>
</tr>
</tbody>
</table>
Dose escalation

Dose level 1 (starting)
100 mg BID AED* (n=4)

Dose level 2
150 mg BID AED* (n=11)

Dose level 3
100 mg/m² BID max 100 mg (n=9)

Interim PK analysis
Protocol modification to only BSA-based dosing

Recommended Phase 2 Dose
100 mg/m² BID max 100 mg

No DLTs

*Adult equivalent doses by SimCyp modeling

Laetsch, 10510
Pharmacokinetics

Concentration-time

Larotrectinib in plasma (ng/mL)

Time (hours)

Estimated plasma AUC$_{0-24}$ (ng*h/mL)

AUC$_{0-24}$ in patients treated with 80–125 mg/m2 BID

Age (years) and mean BID dose

*One patient included in both <2 and 2–11 year categories (due to aging while on study)
Treatment-emergent AEs related to study drug*

100 mg/m² (n=9)

<table>
<thead>
<tr>
<th></th>
<th>Gr 1</th>
<th>Gr 2</th>
<th>Gr 3</th>
<th>Gr 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>33%</td>
<td>–</td>
<td>11%</td>
<td>–</td>
<td>44%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>22%</td>
<td>–</td>
<td>11%</td>
<td>–</td>
<td>33%</td>
</tr>
<tr>
<td>Increased AST</td>
<td>11%</td>
<td>11%</td>
<td>–</td>
<td>–</td>
<td>22%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>11%</td>
<td>11%</td>
<td>–</td>
<td>–</td>
<td>22%</td>
</tr>
<tr>
<td>Anemia</td>
<td>22%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>22%</td>
</tr>
<tr>
<td>Constipation</td>
<td>22%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>22%</td>
</tr>
<tr>
<td>Increased ALT</td>
<td>–</td>
<td>–</td>
<td>11%</td>
<td>–</td>
<td>11%</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>11%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11%</td>
</tr>
<tr>
<td>Hypoalbuminemia</td>
<td>11%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11%</td>
</tr>
<tr>
<td>Blood creatinine increased</td>
<td>11%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>11%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11%</td>
</tr>
</tbody>
</table>

Total (n=24)

<table>
<thead>
<tr>
<th></th>
<th>Gr 1</th>
<th>Gr 2</th>
<th>Gr 3</th>
<th>Gr 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>17%</td>
<td>–</td>
<td>4%</td>
<td>–</td>
<td>21%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>8%</td>
<td>4%</td>
<td>4%</td>
<td>–</td>
<td>17%</td>
</tr>
<tr>
<td>Increased AST</td>
<td>33%</td>
<td>4%</td>
<td>–</td>
<td>–</td>
<td>38%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>13%</td>
<td>8%</td>
<td>–</td>
<td>–</td>
<td>21%</td>
</tr>
<tr>
<td>Anemia</td>
<td>13%</td>
<td>4%</td>
<td>–</td>
<td>–</td>
<td>17%</td>
</tr>
<tr>
<td>Constipation</td>
<td>13%</td>
<td>4%</td>
<td>–</td>
<td>–</td>
<td>17%</td>
</tr>
<tr>
<td>Increased ALT</td>
<td>21%</td>
<td>4%</td>
<td>4%</td>
<td>–</td>
<td>29%</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>21%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>21%</td>
</tr>
<tr>
<td>Hypoalbuminemia</td>
<td>17%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>17%</td>
</tr>
<tr>
<td>Blood creatinine increased</td>
<td>13%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>13%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>8%</td>
<td>4%</td>
<td>–</td>
<td>–</td>
<td>13%</td>
</tr>
</tbody>
</table>

*In ≥10% of patients
High response rate in children with TRK fusions

Note: 3 Non-NTRK fusion patients not shown due to clinical disease progression without post-baseline tumor measurements. 4 TRK fusion patients not shown due to having non-measurable disease (n=2) or no disease assessments yet/continuing treatment (n=2). *Pathologic CR
Efficacy regardless of tumor type

Note: 3 Non-NTRK fusion patients not shown due to clinical disease progression without post-baseline tumor measurements. 4 TRK fusion patients not shown due to having non-measurable disease (n=2) or no disease assessments yet/continuing treatment (n=2). *Pathologic CR
Efficacy regardless of TRK gene

Note: 3 Non-NTRK fusion patients not shown due to clinical disease progression without post-baseline tumor measurements. 4 TRK fusion patients not shown due to having non-measurable disease (n=2) or no disease assessments yet/continuing treatment (n=2). *Pathologic CR
Efficacy regardless of fusion partner

Note: 3 Non-NTRK fusion patients not shown due to clinical disease progression without post-baseline tumor measurements. 4 TRK fusion patients not shown due to having non-measurable disease (n=2) or no disease assessments yet/continuing treatment (n=2). *Pathologic CR
Clinical activity of larotrectinib

<table>
<thead>
<tr>
<th></th>
<th>TRK fusions (n=17)*</th>
<th>Non-fusions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Confirmatory response data available (n=11)</td>
<td>All patients (n=13)</td>
</tr>
<tr>
<td>Objective response rate (95% CI)</td>
<td>91% (59–100%)</td>
<td>92%** (64–100%)</td>
</tr>
<tr>
<td>Partial response</td>
<td>64%</td>
<td>62%**</td>
</tr>
<tr>
<td>Complete response</td>
<td>27%</td>
<td>31%**</td>
</tr>
<tr>
<td>Stable disease</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*4 patients not evaluable due to having non-measurable disease (n=2) or no disease assessments yet/continuing treatment (n=2)

**Includes unconfirmed responses with confirmatory scans pending (1 PR, 1 CR). Both remain in response and ongoing on study.
Responses occur early and are durable

- Treatment after surgery
- Treatment ongoing
- Pathologic CR
- Post-surgery observation
- Time to first response

*Only patient with TRK fusion to develop PD
Confirmed TRKC G623R solvent front resistance mutation
Patient re-responded to LOXO-195*

*Patients had non-measurable disease at baseline

Laetsch, 10510
Drilon A, Cancer Discovery, Online First (03-JUNE-2017)
Rapid response in infant with ETV6-NTRK3 infantile fibrosarcoma (IFS)

Baseline

Before Cycle 3

After four doses

31 do infant with IFS of the scalp
Rapid recurrence following surgical resection
Marked clinical improvement after four doses of larotrectinib
CR after 2 cycles of larotrectinib
Remains on therapy after 2 cycles
Rapid and durable response in patient with metastatic STRN-NTRK2 fusion sarcoma

Baseline

Before Cycle 2

11 yo girl with retroperitoneal undifferentiated sarcoma harboring STRN-NTRK2 fusion
Refractory to vincristine/ doxorubicin/cyclophosphamide, ifosfamide/etoposide, sorafenib, and vincristine/irinotecan
PR after 1 cycle of larotrectinib with rapid clinical improvement
Remains in response after 13 cycles
ETV6-NTRK3 infantile fibrosarcoma patient

2 yo girl with infantile fibrosarcoma

2 cycles of vincristine/actinomycin-D/cyclophosphamide → progression
→ leg amputation was only alternative option

4 cycles larotrectinib → referred for surgery

Pathologic complete response with clear margins

No functional deficit post-surgery
Larotrectinib is active and well-tolerated in children with TRK fusion cancers

• Larotrectinib demonstrated a favorable tolerability profile and histology-independent activity in pediatric patients harboring TRK fusions

• Recommended phase 2 dose in children: 100 mg/m² BID continuously, cap 100 mg/dose
 – No DLTs at any dose level
 – Similar exposure to adults at RP2D
 – Highly active

• Phase 2 portion of trial is enrolling globally (Abstract TPS10577)
 – Infantile fibrosarcoma
 – Other CNS and extracranial TRK fusion solid cancers
Acknowledgements

The authors would like to thank

• Patients and their families
• Research staff

Funded by Loxo Oncology, Inc