Pirtobrutinib, a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor in Previously Treated Mantle Cell Lymphoma: Updated Results from the Phase 1/2 BRUIN Study

Presented at: ASH ANNUAL MEETING & EXPOSITION
Date: December 12, 2021
Pirtobrutinib, a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor in Previously Treated Mantle Cell Lymphoma: Updated Results from the Phase 1/2 BRUIN Study

1Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX; 2Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI; 3Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL; 4Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; 5Florida Cancer Specialists / Sarah Cannon Research Institute, Sarasota, FL; 6Division of Hematology and Oncology, University of California, San Francisco, CA; 7Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; 8Linear Clinical Research and Sir Charles Gardiner Hospital, Perth, Australia; 9Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; 10Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; 11Plymouth Hospitals NHS Trust - Derriford Hospital, Plymouth, United Kingdom; 12Service d’hématologie clinique du CHU de Nantes, INSERM CRCINA-Nantes-Angers, NeXt Université de Nantes, Nantes, France; 13Memorial Sloan Kettering Cancer Center, New York, NY; 14The Ohio State University Comprehensive Cancer Center, Columbus, OH; 15Center for Blood Disorders and Stem Cell Transplantation, Swedish Cancer Institute, Seattle, WA; 16Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY; 17Winship Cancer Institute, Emory University, Atlanta, GA; 18Mary Crowley Cancer Research, Dallas, TX; 19Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, MI, Italy; 20Churchill Cancer Center, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; 21Institute of Hematology “Serágnol” University of Bologna, Bologna, Italy; 22Frederick Hutchinson Cancer Research Center, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; 23National Cancer Center Hospital, Tokyo, Japan; 24Institute of Hematology and Transfusion Medicine, Warsaw, Poland; 25Peter MacCallum Cancer Center, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Australia; 26Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; 27Loxo Oncology at Lilly, Stamford, CT
Presenting Author Disclosures

Research support:
Acerta Pharma, AstraZeneca, BeiGene, BioInvent, Celgene, Elli Lilly, Molecular Templates, InnoCare, Juno, Loxo Oncology, Oncternal, Pharmacyclics, VelosBio, Janssen, Kite Pharma

Advisory/Consultancy:
AstraZeneca, BeiGene, Epizyme, Janssen, Kite Pharma, Miltenyi Biomedicine GmbH, Bayer Healthcare, CSTone, DTRM Biopharma (Cayman) Limited, Genentech, InnoCare, Juno, Loxo Oncology, Oncternal, Pharmacyclics, VelosBio

Honoraria/Travel support:
Acerta Pharma, Anticancer Association, AstraZeneca, BeiGene, CAHON, Chinese Medical Association, Clinical Care Options, Dava Oncology, Epizyme, Hebei Cancer Prevention Federation, Imbruvica, Imedex, Janssen, Kite Pharma, Miltenyi Biomedicine GmbH, Moffit Cancer Center, Mumbai Hematology Group, Newbridge Pharmaceuticals, OMI, Physicians Education Resources (PER), Scripps, The First Afflicted Hospital of Zhejiang University, BGICS
Outcomes in MCL are Extremely Poor Following Covalent BTK Inhibitor Progression

- Covalent BTK inhibitor resistance in MCL and other lymphomas is incompletely understood1-10
- BTK C481-mutations are uncommon; bypass alterations & epigenetic changes implicated in some patients7
- \textit{Overall survival} following covalent BTK inhibitor therapy is poor3,4,11

\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\includegraphics[width=\textwidth]{fig1.png}
\caption{Analysis of n = 114 global patients\linebreak Median OS = 2.9 months}
\end{subfigure}\hspace{1cm}
\begin{subfigure}{0.3\textwidth}
\includegraphics[width=\textwidth]{fig2.png}
\caption{Analysis of n = 31 US patients\linebreak Median OS = 8.4 months}
\end{subfigure}\hspace{1cm}
\begin{subfigure}{0.3\textwidth}
\includegraphics[width=\textwidth]{fig3.png}
\caption{Analysis of n = 108 Japanese patients\linebreak Median OS = 5.46 months}
\end{subfigure}
\end{figure}

Pirtobrutinib is a Highly Potent and Selective Non-Covalent (Reversible) BTK Inhibitor

Kinome selectivity¹
Highly selective for BTK

Xenograft models
In vivo activity similarly efficacious as ibrutinib in WT; superior in C481S

- Nanomolar potency against WT & C481-mutant BTK in cell and enzyme assays²
- >300-fold selectivity for BTK vs 370 other kinases²
- Due to reversible binding mode, BTK inhibition not impacted by intrinsic rate of BTK turnover²
- Favorable pharmacologic properties allow sustained BTK inhibition throughout dosing interval²

Phase 1/2 BRUIN Study: Design, Eligibility and Enrollment

Data cutoff date of 16 July 2021. *Efficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. *Other includes DLBCL, WM, FL, MZL, Richter’s transformation, B-PLL, Hairy Cell Leukemia, PCNSL, and other transformation.

Eligibility
- Age ≥18
- ECOG 0-2
- CLL or other B-cell NHL
- Active disease and in need of treatment
- Previously treated

Key endpoints
- Safety/tolerability
- Determine MTD & recommended phase 2 dose
- Pharmacokinetics
- Efficacy according to ORR & DoR based on disease criteria (Lugano, iwCLL, IWWM)

Safety population
- CLL/SLL n=296
- MCL n=134
- Otherb n=188

Efficacy population
- MCL n=111

Prior BTK treatment
- Prior BTK n=100
- No Prior BTK n=11

Phase 1 Escalation + Expansion (25 to 300 mg QD)
- Phase 2 (200 mg QD) n=618

- Cohort expansion permitted at doses deemed safe
- 28-day cycles
- Intra-patient dose escalation allowed
- 28-day cycles
- Intra-patient dose escalation allowed
- Cohort expansion permitted at doses deemed safe
Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>MCL (n=134)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range), years</td>
<td>70 (46, 88)</td>
</tr>
<tr>
<td>Female / Male, n (%)</td>
<td>30 (22) / 104 (78)</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>Classic</td>
<td>108 (81)</td>
</tr>
<tr>
<td>Pleomorphic/Blastoid</td>
<td>26 (19)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>82 (61)</td>
</tr>
<tr>
<td>1</td>
<td>50 (37)</td>
</tr>
<tr>
<td>2</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Median number prior lines of systemic therapy (range)</td>
<td>3 (1, 9)</td>
</tr>
<tr>
<td>Prior therapy, n (%)</td>
<td></td>
</tr>
<tr>
<td>BTK inhibitor</td>
<td>120 (90)</td>
</tr>
<tr>
<td>Anti-CD20 antibody</td>
<td>130 (97)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>122 (91)</td>
</tr>
<tr>
<td>Stem cell transplant(^b)</td>
<td>30 (22)</td>
</tr>
<tr>
<td>IMiD</td>
<td>23 (17)</td>
</tr>
<tr>
<td>BCL2 inhibitor</td>
<td>20 (15)</td>
</tr>
<tr>
<td>Proteasome inhibitor</td>
<td>17 (13)</td>
</tr>
<tr>
<td>CAR-T</td>
<td>7 (5)</td>
</tr>
<tr>
<td>PI3K inhibitor</td>
<td>5 (4)</td>
</tr>
<tr>
<td>Reason discontinued prior BTKia(^a)</td>
<td></td>
</tr>
<tr>
<td>Progressive disease</td>
<td>100 (83)</td>
</tr>
<tr>
<td>Toxicity/Other</td>
<td>20 (17)</td>
</tr>
</tbody>
</table>

Data cutoff date of 16 July 2021. Total % may be different than the sum of the individual components due to rounding. \(^a\)Calculated as percent of patients who received prior BTK inhibitor. \(^b\)3 patients had both auto and allo stem cell transplants.
Pirtobrutinib Efficacy in Mantle Cell Lymphoma

BTK Pre-Treated MCL Patients
- **n=100**
- **Overall Response Rate**, % (95% CI): 51% (41-61)
 - **Best Response**
 - **CR, n (%)**: 25 (25)
 - **PR, n (%)**: 26 (26)
 - **SD, n (%)**: 16 (16)

BTK Naive MCL Patients
- **n=11**
- **Overall Response Rate**, % (95% CI): 82% (48-98)
 - **Best Response**
 - **CR, n (%)**: 2 (18)
 - **PR, n (%)**: 7 (64)
 - **SD, n (%)**: 1 (9)

Efficacy also seen in patients with prior:
- Stem cell transplant (n=28): ORR 64% (95% CI: 44-81)
- CAR-T therapy (n=6): ORR 50% (95% CI: 12-88)

Data cutoff date of 16 July 2021. Data for 20 MCL patients are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. *Indicates patients with >100% increase in SPD. Efficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ORR includes patients with a best response of CR and PR. Response status per Lugano 2014 criteria based on investigator assessment. Total % may be different than the sum of the individual components due to rounding.
Pirtobrutinib Duration of Response in Mantle Cell Lymphoma

Data cutoff date of 16 July 2021. Response status per Lugano 2014 criteria based on investigator assessment.

- Median follow-up of 8.2 months (range, 1.0 - 27.9 months) for responding patients
- 60% (36 of 60) of responses are ongoing

Median duration of response: 18 months (95% CI: 4.6, Not Estimable)
Pirtobrutinib Safety Profile

Data cutoff date of 16 July 2021. Total % may be different than the sum of the individual components due to rounding.

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Treatment-emergent AEs, (≥15%), %</th>
<th>Treatment-related AEs, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Fatigue</td>
<td>13%</td>
<td>8%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>15%</td>
<td>4%</td>
</tr>
<tr>
<td>Neutropenia<sup>a</sup></td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Contusion</td>
<td>15%</td>
<td>2%</td>
</tr>
<tr>
<td>AEs of special interest<sup>b</sup></td>
<td>Bruising<sup>c</sup></td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Rash<sup>d</sup></td>
<td>9%</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>8%</td>
<td>3%</td>
</tr>
<tr>
<td>Hemorrhage<sup>e</sup></td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1%</td>
<td>4%</td>
</tr>
<tr>
<td>Atrial fibrillation/flutter<sup>f</sup></td>
<td>-</td>
<td>1%</td>
</tr>
</tbody>
</table>

No DLTs reported and MTD not reached

96% of patients received ≥1 pirtobrutinib dose at or above RP2D of 200 mg daily

1% (n=6) of patients permanently discontinued due to treatment-related AEs

Data cutoff date of 16 July 2021. Total % may be different than the sum of the individual components due to rounding.

*Aggregate of neutropenia and neutrophil count decreased.

^aAggregate of contusion, petechiae, ecchymosis, and increased tendency to bruise.

^bAggregate of all preferred terms including rash.

^cAggregate of all preferred terms including hematoma or hemorrhage.

^dAggregate of atrial fibrillation and atrial flutter.

^eRepresents 6 events (all grade 3), including 2 cases of post-operative bleeding, 1 case each of GI hemorrhage in the setting of sepsis, NSAID use, chronic peptic ulcer disease, and one case of subarachnoid hemorrhage in setting of traumatic bike accident.

^fOf 10 total afib/aflutter TEAEs, 3 occurred in patients with a prior medical history of atrial fibrillation, 2 in patients presenting with concurrent systemic infection, and 2 in patients with both.
Conclusions

• Pirtobrutinib demonstrates promising efficacy in MCL patients previously treated with BTK inhibitors, a population with extremely poor outcomes

• Favorable safety and tolerability are consistent with the design of pirtobrutinib as a highly selective and non-covalent (reversible) BTK inhibitor

• A randomized, global, phase 3 trial comparing pirtobrutinib with investigator’s choice of covalent BTK inhibitors in BTK naïve relapsed MCL is ongoing (BRUIN MCL-321; NCT04662255)
Acknowledgements

- BRUIN trial patients, their families and caregivers
- BRUIN trial investigators and study staff
- Medical writing was supported by Loxo Oncology Inc., a wholly owned subsidiary of Eli Lilly and Company